Note 643

Synthesis and Crystal Structure of Barium Indide Ba₀In₄

Volodymyr Smetana and Arndt Simon

Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany

Reprint requests to Prof. A. Simon. E-mail: a.simon@fkf.mpg.de

Z. Naturforsch. **2010**, *65b*, 643 – 645; received February 23, 2010

A new binary compound in the system Ba-In has been synthesized and structurally characterized. According to single-crystal X-ray diffraction data Ba₉In₄ crystallizes with tetragonal symmetry (I4/m, a=13.948(2), c=5.888(1) Å, V=1145.5(3) Å³, Z=2, R1=0.037, wR2=0.071). The very moisture-sensitive compound could be obtained as single phase by reaction of metallic barium and indium at 350 °C.

Key words: Indium, Barium, Binary Indides, Crystal Structure

Introduction

Numerous compounds have been reported to exist in the binary AE-In (AE = alkaline earth metal) systems. The Ca-In and Sr-In systems were re-examined in the last ten years, however, only the In-rich part of the Ba-In system has been structurally described. Five compounds are known in the system Ca-In, i. e. Ca_3In , Ca_8In_3 , Ca_2In , CaIn, and $CaIn_2$ [1-4], and thirteen compounds have been proposed in the Sr-In system, but only seven of them were confirmed: Sr_{2,33}In_{0,92}, Sr₅In₃, Sr₁₁In₇, SrIn, SrIn₂, Sr₃In₁₁, and SrIn₄ [2, 3, 5, 6]. Investigations of the system Ba-In were started in the 1970ies revealing six new compounds, Ba₁₃In, Ba₃In, Ba₂In, BaIn, BaIn₂, and BaIn₄ [7-10]. The last three of these are well described [3]. In contrast, still no details about the phases Ba₁₃In, Ba₃In, and Ba₂In are known. According to thermal analysis data the latter transforms from α -Ba₂In into a high-temperature modification, β -Ba₂In, at 505 °C [8].

Results and Discussion

A sample with the composition Ba₂In was prepared in order to investigate the structure of the previ-

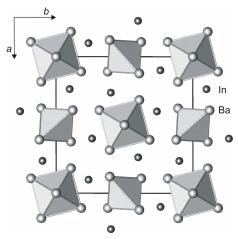


Fig. 1. Crystal structure of Ba₉In₄ projected along [001].

ously identified compound α -Ba₂In. However, the X-ray investigation of selected single-crystals resulted in a composition Ba₉In₄, and the powder pattern of the complete sample showed Ba₉In₄ to be the main phase. The subsequent preparation of a sample with the appropriate stoichiometric ratio Ba:In = 9:4 led to a single phase product.

Details of the data collection and structure refinement are listed in Table 1, positional and anisotropic displacement parameters in Tables 2 and 3. Ba₉In₄ crystallizes in the Nb₅Si₄Cu₄ structure type [11], characterized by rows of corner-sharing Ba₆ (Nb₆) octahedra along [001] with In (Si) atoms above all their faces. The space between these rows is filled with chains of edge-sharing Ba₄ (Cu₄) tetrahedra (Fig. 1). According to its structure, the composition of Ba₉In₄ can thus be described as $(Ba_4Ba_{2/2}In_{8/2})(Ba_{4/2})_2\cong$ Ba₉In₄. Of course, what might be a meaningful description in the case of Nb₅Si₄Cu₄ due to the different bonding character Si-Nb vs. Si-Cu is rather artificial when it comes to Ba₉In₄ \cong (Ba₄Ba_{2/2})(Ba_{4/2})₂In₄, because the coordination of In in both octahedral and tetrahedral arrangements of the same element does not result in any clear priority in bonding. The In atom is surrounded by a highly distorted trigonal prism of Ba atoms with 5.89 Å height and Ba-Ba distances ranging from 4.04 to 4.34 Å in the trigonal face (Fig. 2). Two rectangular faces are capped by Ba atoms at Ba-In distances of 3.50 and 3.59 Å, whereas the third sees two, one at 3.72 Å and the other further away at 4.28 Å. The Ba-In distances in that coordination Note Note

Table 1. Crystal data and numbers pertinent to data collection and refinement of Ba_0In_4 .

, ·	
Empirical formula	Ba ₉ In ₄
Formula weight	3390.7
Temperature, K	293(2)
Radiation; wavelength, Å	AgK_{α} ; 0.56086
Crystal system	tetragonal
Space group	I4/m
a, Å	13.948(2)
c, Å	5.888(1)
Volume, Å ³	1145.5(3)
Z	2
Density (calcd.), g cm ⁻³	4.92
$\mu(AgK_{\alpha}), mm^{-1}$	10.1
F(000), e	1400
θ range deg	3.76 - 36.51
Index ranges hkl	$-22, +22, \pm 9$
Reflections collected / independent	11322 / 1519
Data averaging: $R_{\rm int}$ / R_{σ}	0.069 / 0.033
Data / ref. parameters	1519 / 22
Final indices R1 / wR2 $[I \ge 2\sigma(I)]^a$	0.037 / 0.071
Indices R1 / wR2 (all data)	0.049 / 0.075
Goodness-of-fit on $F^{2 \text{ b}}$	1.14
Largest diff. peak and hole, e ⁻ /Å ³	1.58 and −1.51

^a $R1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$, $wR2 = [\Sigma w(F_0^2 - F_c^2)^2/\Sigma w(F_0^2)^2]^{1/2}$, $w = [\sigma^2(F_0^2) + (AP)^2 + BP]^{-1}$, where $P = (\text{Max}(F_0^2, 0) + 2F_c^2)/3$; ^b $GoF = [\Sigma w(F_0^2 - F_c^2)^2/(n_{\text{obs}} - n_{\text{param}})]^{1/2}$.

Table 2. Atomic coordinates and equivalent displacement parameters (\mathring{A}^2) for Ba₉In₄.

Atom	Site	х	у	z	$U_{ m eq}$
Ba1	2b	0	0	1/2	0.0214(1)
Ba2	8h	0.10852(2)	0.18309(2)	0	0.02475(6)
Ba3	8h	0.39171(3)	0.12202(3)	0	0.03240(8)
In1	8h	0.26291(3)	0.40044(3)	0	0.02631(7)

polyhedron range from 3.50 to 4.28 Å, averaging to 3.81 Å to be compared with the sum of atomic radii, 3.91 Å. The closest Ba–Ba contacts are in the range 4.01 to 4.36 Å. In contrast to the three known structures of Ba-In compounds in the In-rich part of the phase diagram, no In–In bonds occur in Ba₉In₄, as expected.

Conclusions

 Ba_9In_4 has been synthesized from barium and indium and characterized by single-crystal and powder X-ray diffraction. This compound obviously substitutes the earlier described phase " Ba_2In ". In contrast to $BaIn_4$, $BaIn_2$ and BaIn it does not follow the Zintl-Klemm concept. The compositions and crystal structures of the other two previously reported Barich phases Ba_3In and $Ba_{13}In$ have still to be clarified.

Table 3. Anisotropic displacement parameters (\mathring{A}^2) for Ba₉In₄. $U_{12} = U_{13} = 0$.

Atom	U_{11}	U_{22}	U_{33}	U_{23}
Ba1	0.0216(1)	U_{11}	0.0212(2)	0
Ba2	0.0249(1)	0.0220(1)	0.0274(1)	0.0001(1)
Ba3	0.0330(2)	0.0418(2)	0.0224(1)	-0.0122(1)
In1	0.0238(2)	0.0327(2)	0.0224(1)	-0.0017(1)

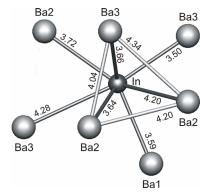


Fig. 2. Coordination polyhedron around In in Ba₉In₄.

Experimental Section

Reagents and synthesis

The compound Ba $_9$ In $_4$ was synthesized from the stoichiometric amounts of Ba metal (Merck, 99.9%, distilled twice with intermediate heating at 1270 K under vacuum in a closed Ta container to remove hydrogen) and In metal (Merck 99.99%) placed in a Ta ampoule under an Ar atmosphere. The ampoule was closed by arc-welding, and the reaction took place at 650 °C for 5 d, followed by cooling to 350 °C at 1 K h $^{-1}$ and annealing at this temperature for 10 d. The resulting product was nearly single phase with only traces of impurities according to X-ray powder diffraction analysis. All handling of the educts as well as of the very moisture-sensitive product were performed under argon atmosphere in a glove box or using Schlenk techniques.

X-Ray investigation

Single crystals of Ba₉In₄ were sealed under argon atmosphere into glass capillaries, and their X-ray diffraction data were collected at r. t. using a Stoe IPDS-I diffractometer with monochromatized Ag K_{α} radiation (oscillation around the ω axis). The starting atomic parameters derived *via* Direct Methods using the program SIR-97 [12] were subsequently refined by full-matrix least-squares on F^2 with the program SHELXL-97 [13] within the WINGX program package [14]. X-Ray powder diffraction patterns were collected on a powder diffractometer Stoe STADI P with monochromatized Mo $K_{\alpha 1}$ radiation. (10 \leq 2 θ \leq 28°, step size 0.1°, 120 s per step).

Note 645

Further details of the crystal structure investigation of Ba₉In₄ may be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; e-mail: crysdata@fiz-karls-

ruhe.de, http://www.fiz-informationsdienste.de/en/DB/icsd/depot_anforderung.html) on quoting the deposition number CSD-421410.

- [1] G. Bruzzone, A. Ruggiero, *J. Less-Common Met.* **1964**, 7, 368 372.
- [2] M. Wendorff, C. Röhr, Z. Naturforsch. 2004, 59b, 619–628.
- [3] M. Wendorff, C. Röhr, Z. Anorg. Allg. Chem. 2005, 631, 338 – 349.
- [4] M. Fornasini, Acta Crystallogr. 1987, C43, 613-616.
- [5] M. Wendorff, C. Röhr, J. Alloys Compd. 2008, 448, 128 – 140.
- [6] S. Amerioun, U. Haeussermann, *Inorg. Chem.* 2003, 42, 7782 – 7788.
- [7] G. Bruzzone, *Acta Crystallogr.* **1965**, *18*, 1081 1082.
- [8] G. Bruzzone, J. Less-Common Met. 1966, 11, 249-258
- [9] C. Dasarathy, *Trans. Met. Soc. AIME* **1969**, 245, 2015 2019
- [10] G. Bruzzone, Atti. Acad. Naz. Lincei, Cl. Sci. Fiz. 1970, 48, 235 – 241.

- [11] E. Ganglberger, *Monatsh. Chem.* **1968**, *99*, 549 556.
- [12] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. C. Moliterni, G. Polidori, R. Spagna, SIR97, A Program for the Automatic Solution of Crystal Structures by Direct Methods; see: *J. Appl. Crystallogr.* 1999, 32, 115 119.
- [13] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen (Germany) **1997**. See also: G. M. Sheldrick, *Acta Crystallogr.* **2008**, *A64*, 112–122.
- [14] L. J. Farrugia, WINGX, A MS-Windows System of Programs for Solving, Refining and Analysing Single-Crystal X-ray Diffraction Data for Small Molecules, University of Glasgow, Glasgow, Scotland (U. K.) 2005. See also: L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837 – 838.